Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38617306

RESUMEN

Lysosomal damage poses a significant threat to cell survival. Our previous work has reported that lysosomal damage induces stress granule (SG) formation. However, the importance of SG formation in determining cell fate and the precise mechanisms through which lysosomal damage triggers SG formation remains unclear. Here, we show that SG formation is initiated via a novel calcium-dependent pathway and plays a protective role in promoting cell survival in response to lysosomal damage. Mechanistically, we demonstrate that during lysosomal damage, ALIX, a calcium-activated protein, transduces lysosomal damage signals by sensing calcium leakage to induce SG formation by controlling the phosphorylation of eIF2α. ALIX modulates eIF2α phosphorylation by regulating the association between PKR and its activator PACT, with galectin-3 exerting a negative effect on this process. We also found this regulatory event of SG formation occur on damaged lysosomes. Collectively, these investigations reveal novel insights into the precise regulation of SG formation triggered by lysosomal damage, and shed light on the interaction between damaged lysosomes and SGs. Importantly, SG formation is significant for promoting cell survival in the physiological context of lysosomal damage inflicted by SARS-CoV-2 ORF3a, adenovirus infection, Malaria hemozoin, proteopathic tau as well as environmental hazard silica.

2.
Autophagy ; 20(2): 448-450, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37876292

RESUMEN

ATG5 plays a pivotal role in membrane Atg8ylation, influencing downstream processes encompassing canonical autophagy and noncanonical processes. Remarkably, genetic ablation of ATG5 in myeloid cells leads to an exacerbated pathological state in murine models of tuberculosis, characterized by an early surge in mortality much more severe when compared to the depletion of other components involved in Atg8ylation or canonical autophagy. This study shows that in the absence of ATG5, but not other core canonical autophagy factors, endolysosomal organelles display a lysosomal hypersensitivity phenotype when subjected to damage. This is in part due to a compromised recruitment of ESCRT proteins to lysosomes in need of repair. Mechanistically, in the absence of ATG5, the ESCRT protein PDCD6IP/ALIX is sequestered by the alternative conjugate ATG12-ATG3, contributing to excessive exocytic processes while not being available for lysosomal repair. Specifically, this condition increases secretion of extracellular vesicles and particles, and leads to excessive degranulation in neutrophils. Our findings uncover unique functions of ATG5 outside of the autophagy and Atg8ylation paradigm. This finding is of in vivo relevance for tuberculosis pathogenesis as modeled in mice.Abbreviations: Atg5: autophagy related 5; ESCRT: endosomal sorting complex required for transport; EVPs: extracellular vesicles and particles; FPR1: formyl peptide receptor 1; LyHYP: lysosomal hypersensitivity phenotype; LysoIP: lysosome immunopurification; Mtb: Mycobacterium tuberculosis; ORF3a: open reading frame 3a protein; PDCD6IP/ALIX: programmed cell death 6 interacting protein; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2, TFEB: transcription factor EB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Autofagia/fisiología , Proteína 5 Relacionada con la Autofagia/metabolismo , Tuberculosis/microbiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Lisosomas/metabolismo
3.
EMBO J ; 42(14): e112845, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37272163

RESUMEN

The canonical autophagy pathway in mammalian cells sequesters diverse cytoplasmic cargo within the double membrane autophagosomes that eventually convert into degradative compartments via fusion with endolysosomal intermediates. Here, we report that autophagosomal membranes show permeability in cells lacking principal ATG8 proteins (mATG8s) and are unable to mature into autolysosomes. Using a combination of methods including a novel in vitro assay to measure membrane sealing, we uncovered a previously unappreciated function of mATG8s to maintain autophagosomal membranes in a sealed state. The mATG8 proteins GABARAP and LC3A bind to key ESCRT-I components contributing, along with other ESCRTs, to the integrity and imperviousness of autophagic membranes. Autophagic organelles in cells lacking mATG8s are permeant, are arrested as amphisomes, and do not progress to functional autolysosomes. Thus, autophagosomal organelles need to be maintained in a sealed state in order to become lytic autolysosomes.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos , Animales , Humanos , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Autofagosomas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Mamíferos
4.
Dev Cell ; 58(10): 866-884.e8, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37054706

RESUMEN

ATG5 is a part of the E3 ligase directing lipidation of ATG8 proteins, a process central to membrane atg8ylation and canonical autophagy. Loss of Atg5 in myeloid cells causes early mortality in murine models of tuberculosis. This in vivo phenotype is specific to ATG5. Here, we show using human cell lines that absence of ATG5, but not of other ATGs directing canonical autophagy, promotes lysosomal exocytosis and secretion of extracellular vesicles and, in murine Atg5fl/fl LysM-Cre neutrophils, their excessive degranulation. This is due to lysosomal disrepair in ATG5 knockout cells and the sequestration by an alternative conjugation complex, ATG12-ATG3, of ESCRT protein ALIX, which acts in membrane repair and exosome secretion. These findings reveal a previously undescribed function of ATG5 in its host-protective role in murine experimental models of tuberculosis and emphasize the significance of the branching aspects of the atg8ylation conjugation cascade beyond the canonical autophagy.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Tuberculosis , Humanos , Animales , Ratones , Proteínas Relacionadas con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Autofagia
5.
Autophagy ; 19(6): 1893-1895, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36394332

RESUMEN

The functions of mammalian Atg8 proteins (mATG8s) expand beyond canonical autophagy and include processes collectively referred to as Atg8ylation. Global modulation of protein synthesis under stress conditions is governed by MTOR and liquid-liquid phase separated condensates containing ribonucleoprotein particles known as stress granules (SGs). We report that lysosomal damage induces SGs acting as a hitherto unappreciated inhibitor of protein translation via EIF2A/eIF2α phosphorylation while favoring an ATF4-dependent integrated stress response. SGs are induced by lysosome-damaging agents, SARS-CoV-2 open reading frame 3a protein (ORF3a) expression, Mycobacterium tuberculosis infection, and exposure to proteopathic MAPT/tau. Proteomic studies revealed recruitment to damaged lysosomes of the core SG proteins NUFIP2 and G3BP1 along with the GABARAPs of the mATG8 family. The recruitment of these proteins is independent of SG condensates or canonical autophagy. GABARAPs interact directly with NUFIP2 and G3BP1 whereas Atg8ylation is needed for their recruitment to damaged lysosomes. At the lysosome, NUFIP2 contributes to MTOR inactivation together with LGALS8 (galectin 8) via the Ragulator-RRAGA-RRAGB complex. The separable functions of NUFIP2 and G3BP1 in SG formation vis-a-vis their role in MTOR inactivation are governed by GABARAP and Atg8ylation. Thus, cells employ membrane Atg8ylation to control and coordinate SG and MTOR responses to lysosomal damage.Abbreviations: Atg8: autophagy related 8; ATG: autophagy related; ATF4: activating transcription factor 4; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; GABARAP: GABA type A receptor-associated protein; G3BP1: G3BP stress granule assembly factor 1; LLOMe: L-leucyl-L-leucine methyl ester; LysoIP: lysosome immunopurification; mRNA: messenger ribonucleic acid; MTOR: mechanistic target of rapamycin kinase; NUFIP2: nuclear FMR1 interacting protein 2; ORF3a: open reading frame 3a protein; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SG: stress granule; TIA1: TIA1 cytotoxic granule associated RNA binding protein.


Asunto(s)
COVID-19 , ADN Helicasas , Animales , Humanos , ADN Helicasas/metabolismo , Gránulos de Estrés , ARN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteómica , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Autofagia , SARS-CoV-2 , Serina-Treonina Quinasas TOR/metabolismo , Lisosomas/metabolismo , Gránulos Citoplasmáticos/metabolismo , Mamíferos/metabolismo , Galectinas/metabolismo
6.
J Cell Biol ; 221(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36179369

RESUMEN

We report that lysosomal damage is a hitherto unknown inducer of stress granule (SG) formation and that the process termed membrane atg8ylation coordinates SG formation with mTOR inactivation during lysosomal stress. SGs were induced by lysosome-damaging agents including SARS-CoV-2ORF3a, Mycobacterium tuberculosis, and proteopathic tau. During damage, mammalian ATG8s directly interacted with the core SG proteins NUFIP2 and G3BP1. Atg8ylation was needed for their recruitment to damaged lysosomes independently of SG condensates whereupon NUFIP2 contributed to mTOR inactivation via the Ragulator-RagA/B complex. Thus, cells employ membrane atg8ylation to control and coordinate SG and mTOR responses to lysosomal damage.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , ADN Helicasas , ARN Helicasas , Animales , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Gránulos de Estrés , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
7.
Cell Stress ; 5(9): 128-142, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34527862

RESUMEN

The yeast Atg8 protein and its paralogs in mammals, mammalian Atg8s (mAtg8s), have been primarily appreciated for their participation in autophagy. However, lipidated mAtg8s, including the most frequently used autophagosomal membrane marker LC3B, are found on cellular membranes other than autophagosomes. Here we put forward a hypothesis that the lipidation of mAtg8s, termed 'Atg8ylation', is a general membrane stress and remodeling response analogous to the role that ubiquitylation plays in tagging proteins. Ubiquitin and mAtg8s are related in sequence and structure, and the lipidation of mAtg8s occurs on its C-terminal glycine, akin to the C-terminal glycine of ubiquitin. Conceptually, we propose that mAtg8s and Atg8ylation are to membranes what ubiquitin and ubiquitylation are to proteins, and that, like ubiquitylation, Atg8ylation has a multitude of downstream effector outputs, one of which is autophagy.

8.
Nat Cell Biol ; 23(8): 846-858, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34257406

RESUMEN

The integral membrane protein ATG9A plays a key role in autophagy. It displays a broad intracellular distribution and is present in numerous compartments, including the plasma membrane (PM). The reasons for the distribution of ATG9A to the PM and its role at the PM are not understood. Here, we show that ATG9A organizes, in concert with IQGAP1, components of the ESCRT system and uncover cooperation between ATG9A, IQGAP1 and ESCRTs in protection from PM damage. ESCRTs and ATG9A phenocopied each other in protection against PM injury. ATG9A knockouts sensitized the PM to permeabilization by a broad spectrum of microbial and endogenous agents, including gasdermin, MLKL and the MLKL-like action of coronavirus ORF3a. Thus, ATG9A engages IQGAP1 and the ESCRT system to maintain PM integrity.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Proteínas de la Membrana/genética , Microscopía Confocal , Transporte de Proteínas/fisiología , Proteínas de Transporte Vesicular/genética
9.
Autophagy ; 16(8): 1539-1541, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521192

RESUMEN

Membrane integrity is essential for cellular survival and function. The spectrum of mechanisms protecting cellular and intracellular membranes is not fully known. Our recent work has uncovered a cellular system termed MERIT for lysosomal membrane repair, removal and replacement. Specifically, lysosomal membrane damage induces, in succession, ESCRT-dependent membrane repair, macroautophagy/autophagy-dominant removal of damaged lysosomes, and initiation of lysosomal biogenesis via transcriptional programs. The MERIT system is governed by galectins, a family of cytosolically synthesized lectins recognizing ß-galactoside glycans. We found in this study that LGALS3 (galectin 3) detects membrane damage by detecting exposed lumenal glycosyl groups, recruits and organizes ESCRT components PDCD6IP/ALIX, CHMP4A, and CHMPB at damaged sites on the lysosomes, and facilitates ESCRT-driven repair of lysosomal membrane. At later stages, LGALS3 cooperates with TRIM16, an autophagy receptor-regulator, to engage autophagy machinery in removal of excessively damaged lysosomes. In the absence of LGALS3, repair and autophagy are less efficient, whereas TFEB nuclear translocation increases to compensate lysosomal deficiency via de novo lysosomal biogenesis. The MERIT system protects endomembrane integrity against a broad spectrum of agents damaging the endolysosomal network including lysosomotropic drugs, Mycobacterium tuberculosis, or neurotoxic MAPT/tau. ABBREVIATIONS: AMPK: AMP-activated protein kinase; APEX2: engineered ascorbate peroxidase 2; ATG13: autophagy related 13; ATG16L1: autophagy related 16 like 1; BMMs: bone marrow-derived macrophages; ESCRT: endosomal sorting complexes required for transport; GPN: glycyl-L-phenylalanine 2-naphthylamide; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MERIT: membrane repair, removal and replacement; MTOR: mechanistic target of rapamycin kinase; TFEB: transcription factor EB; TFRC: transferrin receptor; TRIM16: tripartite motif-containing 16.


Asunto(s)
Membrana Celular/metabolismo , Lisosomas/metabolismo , Animales , Autofagia , Calcio/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Galectinas/metabolismo , Humanos , Modelos Biológicos
10.
Autophagy ; 16(8): 1550-1552, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32597364

RESUMEN

Lysosomal damage activates AMPK, a regulator of macroautophagy/autophagy and metabolism, and elicits a strong ubiquitination response. Here we show that the cytosolic lectin LGALS9 detects lysosomal membrane breach by binding to lumenal glycoepitopes, and directs both the ubiquitination response and AMPK activation. Proteomic analyses have revealed increased LGALS9 association with lysosomes, and concomitant changes in LGALS9 interactions with its newly identified partners that control ubiquitination-deubiquitination processes. An LGALS9-inetractor, deubiquitinase USP9X, dissociates from damaged lysosomes upon recognition of lumenal glycans by LGALS9. USP9X's departure from lysosomes promotes K63 ubiquitination and stimulation of MAP3K7/TAK1, an upstream kinase and activator of AMPK hitherto orphaned for a precise physiological function. Ubiquitin-activated MAP3K7/TAK1 controls AMPK specifically during lysosomal injury, caused by a spectrum of membrane-damaging or -permeabilizing agents, including silica crystals, the intracellular pathogen Mycobacterium tuberculosis, TNFSF10/TRAIL signaling, and the anti-diabetes drugs metformin. The LGALS9-ubiquitin system activating AMPK represents a novel signal transduction system contributing to various physiological outputs that are under the control of AMPK, including autophagy, MTOR, lysosomal maintenance and biogenesis, immunity, defense against microbes, and metabolic reprograming. ABBREVIATIONS: AMPK: AMP-activated protein kinase; APEX2: engineered ascorbate peroxidase 2; ATG13: autophagy related 13; ATG16L1: autophagy related 16 like 1; BMMs: bone marrow-derived macrophages; CAMKK2: calcium/calmodulin dependent protein kinase kinase 2; DUB: deubiquitinase; GPN: glycyl-L-phenylalanine 2-naphthylamide; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MERIT: membrane repair, removal and replacement; MTOR: mechanistic target of rapamycin kinase; STK11/LKB1: serine/threonine kinase 11; TNFSF10/TRAIL: TNF superfamily member 10; USP9X: ubiquitin specific peptidase 9 X-linked.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Galectinas/metabolismo , Lisosomas/patología , Transducción de Señal , Ubiquitina/metabolismo , Animales , Humanos , Lisosomas/metabolismo , Modelos Biológicos , Ubiquitinación
11.
Mol Cell ; 77(5): 951-969.e9, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31995728

RESUMEN

AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes within the Gal9 interactome during lysosomal damage. Gal9 association with lysosomal glycoproteins increases whereas interactions with a newly identified Gal9 partner, deubiquitinase USP9X, diminishes upon lysosomal injury. In response to damage, Gal9 displaces USP9X from complexes with TAK1 and promotes K63 ubiquitination of TAK1 thus activating AMPK on damaged lysosomes. This triggers autophagy and contributes to autophagic control of membrane-damaging microbe Mycobacterium tuberculosis. Thus, galectin and ubiquitin systems converge to activate AMPK and autophagy during endomembrane homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Metabolismo Energético , Galectinas/metabolismo , Lisosomas/enzimología , Ubiquitina/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Adolescente , Adulto , Animales , Autofagia/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Activación Enzimática , Femenino , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Hipoglucemiantes/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/microbiología , Lisosomas/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Metformina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/patogenicidad , Transducción de Señal , Células THP-1 , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Adulto Joven
12.
Dev Cell ; 52(1): 69-87.e8, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31813797

RESUMEN

Endomembrane damage elicits homeostatic responses including ESCRT-dependent membrane repair and autophagic removal of damaged organelles. Previous studies have suggested that these systems may act separately. Here, we show that galectin-3 (Gal3), a ß-galactoside-binding cytosolic lectin, unifies and coordinates ESCRT and autophagy responses to lysosomal damage. Gal3 and its capacity to recognize damage-exposed glycans were required for efficient recruitment of the ESCRT component ALIX during lysosomal damage. Both Gal3 and ALIX were required for restoration of lysosomal function. Gal3 promoted interactions between ALIX and the downstream ESCRT-III effector CHMP4 during lysosomal repair. At later time points following lysosomal injury, Gal3 controlled autophagic responses. When this failed, as in Gal3 knockout cells, lysosomal replacement program took over through TFEB. Manifestations of this staged response, which includes membrane repair, removal, and replacement, were detected in model systems of lysosomal damage inflicted by proteopathic tau and during phagosome parasitism by Mycobacterium tuberculosis.


Asunto(s)
Autofagia , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Galectina 3/metabolismo , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Tuberculosis/prevención & control , Proteínas tau/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Glicosilación , Humanos , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/inmunología , Tuberculosis/metabolismo , Tuberculosis/microbiología
13.
EMBO J ; 38(22): e101994, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31625181

RESUMEN

Mammalian homologs of yeast Atg8 protein (mAtg8s) are important in autophagy, but their exact mode of action remains ill-defined. Syntaxin 17 (Stx17), a SNARE with major roles in autophagy, was recently shown to bind mAtg8s. Here, we identified LC3-interacting regions (LIRs) in several SNAREs that broaden the landscape of the mAtg8-SNARE interactions. We found that Syntaxin 16 (Stx16) and its cognate SNARE partners all have LIR motifs and bind mAtg8s. Knockout of Stx16 caused defects in lysosome biogenesis, whereas a Stx16 and Stx17 double knockout completely blocked autophagic flux and decreased mitophagy, pexophagy, xenophagy, and ribophagy. Mechanistic analyses revealed that mAtg8s and Stx16 control several properties of lysosomal compartments including their function as platforms for active mTOR. These findings reveal a broad direct interaction of mAtg8s with SNAREs with impact on membrane remodeling in eukaryotic cells and expand the roles of mAtg8s to lysosome biogenesis.


Asunto(s)
Autofagosomas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia , Lisosomas/metabolismo , Proteínas Qa-SNARE/metabolismo , Sintaxina 16/metabolismo , Secuencias de Aminoácidos , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Células HEK293 , Células HeLa , Humanos , Redes y Vías Metabólicas , Unión Proteica , Dominios Proteicos , Proteínas Qa-SNARE/antagonistas & inhibidores , Proteínas Qa-SNARE/genética , ARN Interferente Pequeño/genética , Sintaxina 16/antagonistas & inhibidores , Sintaxina 16/genética
14.
Autophagy ; 15(1): 169-171, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30081722

RESUMEN

The Ser/Thr protein kinase MTOR (mechanistic target of rapamycin kinase) regulates cellular metabolism and controls macroautophagy/autophagy. Autophagy has both metabolic and quality control functions, including recycling nutrients at times of starvation and removing dysfunctional intracellular organelles. Lysosomal damage is one of the strongest inducers of autophagy, and yet mechanisms of its activation in response to lysosomal membrane damage are not fully understood. Our recent study has uncovered a new signal transduction system based on cytosolic galectins that elicits autophagy by controlling master regulators of metabolism and autophagy, MTOR and AMPK, in response to lysosomal damage. Thus, intracellular galectins are not, as previously thought, passive tags recognizing damage to guide selective autophagy receptors, but control the activation state of AMPK and MTOR in response to endomembrane damage. Abbreviations: MTOR: mechanistic target of rapamycin kinase; AMPK: AMP-activated protein kinase / Protein Kinase AMP-Activated; SLC38A9: Solute Carrier Family 38 Member 9; APEX2: engineered ascorbate peroxidase 2; RRAGA/B: Ras Related GTP Binding A or B; LAMTOR1: Late Endosomal/Lysosomal Adaptor, MAPK and MTOR Activator 1; LGALS8: Lectin, Galactoside-Binding, Soluble, 8 / Galectin 8; LGALS9: Lectin, Galactoside-Binding, Soluble, 9 / Galectin 9; TAK1: TGF-Beta Activated Kinase 1 / Mitogen-Activated Protein Kinase Kinase Kinase 7 (MAP3K7); STK11/LKB1: Serine/Threonine Kinase 11 / Liver Kinase B1; ULK1: Unc-51 Like Autophagy Activating Kinase 1.


Asunto(s)
Autofagia , Proteínas Quinasas Activadas por AMP , Galectinas , Lisosomas , Serina-Treonina Quinasas TOR
15.
Mol Cell ; 70(1): 120-135.e8, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625033

RESUMEN

The Ser/Thr protein kinase mTOR controls metabolic pathways, including the catabolic process of autophagy. Autophagy plays additional, catabolism-independent roles in homeostasis of cytoplasmic endomembranes and whole organelles. How signals from endomembrane damage are transmitted to mTOR to orchestrate autophagic responses is not known. Here we show that mTOR is inhibited by lysosomal damage. Lysosomal damage, recognized by galectins, leads to association of galectin-8 (Gal8) with the mTOR apparatus on the lysosome. Gal8 inhibits mTOR activity through its Ragulator-Rag signaling machinery, whereas galectin-9 activates AMPK in response to lysosomal injury. Both systems converge upon downstream effectors including autophagy and defense against Mycobacterium tuberculosis. Thus, a novel galectin-based signal-transduction system, termed here GALTOR, intersects with the known regulators of mTOR on the lysosome and controls them in response to lysosomal damage. VIDEO ABSTRACT.


Asunto(s)
Autofagia , Galectinas/metabolismo , Lisosomas/enzimología , Serina-Treonina Quinasas TOR/metabolismo , Tuberculosis/enzimología , Proteínas Quinasas Activadas por AMP/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Galectinas/deficiencia , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Lisosomas/microbiología , Lisosomas/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos , Mycobacterium tuberculosis/patogenicidad , Transducción de Señal , Células THP-1 , Serina-Treonina Quinasas TOR/genética , Tuberculosis/genética , Tuberculosis/microbiología , Tuberculosis/patología
16.
Semin Cell Dev Biol ; 83: 36-41, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29580970

RESUMEN

The autophagy pathway known also as macroautophagy (herein referred to as autophagy) is characterized by the formation of double-membrane organelles that capture cytosolic material. Based on pathway termination alternatives, autophagy has been divided into degradative and secretory. During degradative autophagy, autophagosomes typically fuse with lysosomes upon which the sequestered material is degraded. During secretory autophagy, instead of degradation the sequestered cargo is subjected to active secretion or passive release. In this review, we focus on the mechanisms of secretion/passive release of the potent pro-inflammatory cytokine IL-1ß, as a prototypical leaderless cytosolic protein cargo studied in the context of secretory autophagy.


Asunto(s)
Autofagia/fisiología , Interleucina-1beta/metabolismo , Humanos
17.
J Cell Biol ; 217(3): 997-1013, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29420192

RESUMEN

Autophagy is a conserved eukaryotic process with metabolic, immune, and general homeostatic functions in mammalian cells. Mammalian autophagosomes fuse with lysosomes in a SNARE-driven process that includes syntaxin 17 (Stx17). How Stx17 translocates to autophagosomes is unknown. In this study, we show that the mechanism of Stx17 recruitment to autophagosomes in human cells entails the small guanosine triphosphatase IRGM. Stx17 directly interacts with IRGM, and efficient Stx17 recruitment to autophagosomes requires IRGM. Both IRGM and Stx17 directly interact with mammalian Atg8 proteins, thus being guided to autophagosomes. We also show that Stx17 is significant in defense against infectious agents and that Stx17-IRGM interaction is targeted by an HIV virulence factor Nef.


Asunto(s)
Autofagosomas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Qa-SNARE/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas de Unión al GTP/genética , Células HEK293 , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , VIH-1/genética , VIH-1/metabolismo , Células HeLa , Humanos , Transporte de Proteínas/genética , Proteínas Qa-SNARE/genética , Células THP-1 , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
18.
Essays Biochem ; 61(6): 637-647, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29233874

RESUMEN

Autophagy is conventionally described as a degradative, catabolic pathway and a tributary to the lysosomal system where the cytoplasmic material sequestered by autophagosomes gets degraded. However, autophagosomes or autophagosome-related organelles do not always follow this route. It has recently come to light that autophagy can terminate in cytosolic protein secretion or release of sequestered material from the cells, rather than in their degradation. In this review, we address this relatively new but growing aspect of autophagy as a complex pathway, which is far more versatile than originally anticipated.


Asunto(s)
Autofagia/fisiología , Animales , Autofagia/genética , Humanos , Inflamación/genética , Inflamación/metabolismo , Lisosomas/genética , Lisosomas/metabolismo , Mitocondrias/metabolismo
19.
Autophagy ; 13(6): 1084-1085, 2017 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-28368721

RESUMEN

Macroautophagy/autophagy plays a role in unconventional secretion of leaderless cytosolic proteins. Whether and how secretory autophagy diverges from conventional degradative autophagy is unclear. We have shown that the prototypical secretory autophagy cargo IL1B/IL-1ß (interleukin 1 ß) is recognized by TRIM16, and that this first to be identified secretory autophagy receptor interacts with the R-SNARE SEC22B to jointly deliver cargo to the MAP1LC3B-II-positive sequestration membranes. Cargo secretion is unaffected by knockdowns of STX17, a SNARE catalyzing autophagosome-lysosome fusion as a prelude to cargo degradation. Instead, SEC22B in combination with plasma membrane syntaxins completes cargo secretion. Thus, secretory autophagy diverges from degradative autophagy by using specialized receptors and a dedicated SNARE machinery to bypass fusion with lysosomes.


Asunto(s)
Autofagia , Vías Secretoras , Humanos , Lisosomas/metabolismo , Fusión de Membrana , Modelos Biológicos , Fagosomas/metabolismo , Proteínas SNARE/metabolismo
20.
EMBO J ; 36(1): 42-60, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27932448

RESUMEN

Autophagy is a process delivering cytoplasmic components to lysosomes for degradation. Autophagy may, however, play a role in unconventional secretion of leaderless cytosolic proteins. How secretory autophagy diverges from degradative autophagy remains unclear. Here we show that in response to lysosomal damage, the prototypical cytosolic secretory autophagy cargo IL-1ß is recognized by specialized secretory autophagy cargo receptor TRIM16 and that this receptor interacts with the R-SNARE Sec22b to recruit cargo to the LC3-II+ sequestration membranes. Cargo secretion is unaffected by downregulation of syntaxin 17, a SNARE promoting autophagosome-lysosome fusion and cargo degradation. Instead, Sec22b in combination with plasma membrane syntaxin 3 and syntaxin 4 as well as SNAP-23 and SNAP-29 completes cargo secretion. Thus, secretory autophagy utilizes a specialized cytosolic cargo receptor and a dedicated SNARE system. Other unconventionally secreted cargo, such as ferritin, is secreted via the same pathway.


Asunto(s)
Autofagia , Proteínas de Unión al ADN/metabolismo , Interleucina-1beta/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas R-SNARE/metabolismo , Factores de Transcripción/metabolismo , Línea Celular , Ferritinas/metabolismo , Humanos , Monocitos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...